A reflector or reflex sight is a generally non-magnifying optical device that allows the user to look through a partially reflecting glass element and see an illuminated projection of an aiming point or some other image superimposed on the field of view.[1][2] These sights work on the simple optical principle that anything at the focus of a lens or curved mirror (such as an illuminated reticle), it will look like it is sitting in front of the viewer at infinity. Reflector sights employ some sort of "reflector" to allow the viewer to see the infinity image and the field of view at the same time, either by bouncing the image created by lens off a slanted glass plate, or by using a mostly clear curved glass reflector that images the reticle while the viewer looks through the reflector. Since the the reticle is at infiity it stays in alignment with the device the sight is attached to regardless of the viewers eye position, removing most of the parallax error found in simple sighting devices.
Since their invention in 1900, reflector sights have come to be used as gun sights on all kinds of weapons. They have been used as a weapon sight on fighter aircraft, in a limited capacity in World War One, widely used in World War Two, and still used as the base component in many types of modern head-up display. They have been used in other types of (usually large) weapons as well, such as anti-aircraft gun sights, anti tank gun sights, and any other role where the operator had to engage fast moving targets over a wide field of view, and the sight itself could be supplied with sufficient electrical power to function. There was some limited use of the sight on small arms after World War Two but it came into wide spread use after the late 70s with the invention of the "red dot" type of sight, with a red light-emitting diode (LED) as its reticle, making a dependable sight with durability and extremely long illumination run time.
Reflector sights are also used in civilian applications such as sights on surveying equipment, optical telescope pointing aids, and camera viewfinders.
Contents |
Reflector sights work by using a lens or an image forming curved mirror with a luminous or reflective overlay image or reticle at its focus, creating an optical collimator that produces a virtual image of that reticle. The image is reflected off some form of angled beam splitter or the partially silvered collimating curved mirror itself so that the observer (looking through the beam splitter or mirror) will see the image at the focus of the collimating optics superimposed in the sight's field of view in focus at ranges up to infinity. Since the optical collimator produces a reticle image made up of collimated light, light that is nearly parallel, the light making up that image is theoretically perfectly parallel with the axis of the device or gun barrel it is aligned with, i.e. with no parallax at infinity. The collimated reticle image can also be seen at any eye position in the cylindrical volume of collimated light created by the sight behind the optical window.[3] But this also means, for targets closer than infinity, sighting towards the edge of the optical window can make the reticle move in relation to the target since the observer is sighting down a parallel light bundle at the edge. Eye movement perpendicular to the devices optical axis will make the reticle image move in exact relationship to eye position in the cylindrical column of light created by the collimating optics.[4][5]
A common type (used in applications such as aircraft gun sights) uses a collimating lens and a beam splitter (Fig. 1 right). This type tends to be bulky since it requires at least two optical components, the lens and the beam splitter/glass plate. The reticle collimation optics are situated at 90° to the optical path making lighting difficult, usually needing additional electric illumination, condensing lenses, etc. A more compact type (Fig.2) replaces the lens/beam splitter configuration with a half silvered or dichroic curved collimating mirror set at an angle that performs both tasks of focusing and combining the image of an offset reticle. This type works well as a small arms sight. It is also possible to place the reticle between the viewer and the curved mirror at the mirror’s focus (Fig. 3). The reticle itself is too close to the eye to be in focus but the curved mirror presents the viewer with an image of the reticle at infinity. This type was invented by Dutch optical engineer Lieuwe Van Albada in 1932[6] originally as a camera viewfinder and has also been used as a gunsight on WW2 bazookas[7].
Reflector sights are generally non-focusing sights, simply a projected reticle bounced off a beam splitter or curved mirror right into the users eye. This gives them the defining characteristics of not needing considerable experience and skill to use, as opposed to simple mechanical sights such as iron sights. This also gives them the characteristic of being a better alternative to sighting devices based on optical telescopes in the aspects of field of view and eye relief in that reflector sights actually have neither: depending on design constraints their field of view is the users naked eye field of view, the sight simply puts a reticle right in the middle of it, and their non-focusing collimated nature means they have no eye relief. There are reflector type sights that are telescopic, either by design or via add on lens kits, but they re-introduce the problems of narrow field of view and limited eye relief.[8] The primary drawback of reflector sight is that they need some way to illuminate the reticle to function. Reticles illuminated by ambient light are hard to use in low light situations, and sights with electrical illumination stop functioning all together if that system fails.[9]
The idea of a reflector sight originated in 1900 with Irish optical designer and telescope maker Sir Howard Grubb in patent No.12108.[10][11] Grubb conceived of his “Gun Sight for large and small Ordnance” as a better alternative to the difficult to use iron sight while avoiding the telescopic sight's limited field of view, greater apparent target speed, parallax errors, and the danger of keeping the eye against an eye stop. In the 1901 THE “SCIENTIFIC TRANSACTIONS OF THE ROYAL DUBLIN SOCIETY” He described his invention as:
It was noted soon after its invention that the sight could be a good alternative to iron sights and also had uses in surveying and measuring equipment.[13] The reflector sight was first used on German fighter aircraft in 1918[14][15] and widely adopted on all kinds of fighter and bomber aircraft in the 1930s. By World War II the reflector sight was being used on many types of weapons besides aircraft, including anti-aircraft guns, naval guns, anti tank weapons, and many other weapon where the user needed the simplicity and quick target acquisition nature of the sight. Through their development in the 30’s and into WWII the sight was also being referred to in some applications by the abbreviation “reflex sight”.[16][17]
Reflector sights were invented as an improved gun-sight and since their invention they have been adapted to many types of weapons. When used with different types of guns, reflector sights are considered an improvement over simple iron sights (sights composed of two spaced metal aiming points that have to be aligned).[18] Iron sights take considerable experience and skill in the user who has to hold a proper eye position and simultaneously focus on the rear sight, the front sight, a target at different distances, and align all three planes of focus to achieve a hit.[19][20] The reflector sight’s single parallax free virtual image in focus with the target removes this aiming problem, helping poor, average, and good shooters alike.
Since the collimated image produced by the sight is only truly parallax free at infinity, the sight has an error circle equal to the diameter of the collimating optics for any target at a finite distance. Depending on the eye position behind the sight and the closeness of the target this induces some aiming error.[21] For larger targets at a distance (given the non-magnifying, quick target acquisitions nature of the sight) this aiming error is considered trivial.[22] On small arms aimed at close targets this is compensated for by keeping the reticle in the middle of the optical window (sighting down its optical axis).[23] Some manufactures of small arms sights also make models with the optical collimator set at a finite distance. This gives the sight parallax due to eye movement the size of the optical window at close range which diminishes to a minimal size at the set distance (somewhere around a desired target range of 25-50 yards).[24]
Compared to standard telescopic sights, a reflector sight with no magnification can be held at any distance from the eye (don’t require a designed eye relief), and at almost any angle, without distorting the image of the target or reticle. They are often used with both eyes open (the brain will tend to automatically superimpose the illuminated reticle image coming from the dominant eye onto the other eye's unobstructed view), giving the shooter normal depth perception and full field of view. Since Reflector sights are not dependent on eye relief, they can theoretically be placed in any mechanically-convenient mounting position on a weapon.
The earliest record of the reflector sight being used with fighter aircraft was in 1918. The optical firm of Optische Antal Oigee of Berlin, working from the Grubb patents, developed 2 versions what came to be known as the Oigee Reflector Sight. Both used a 45 degree angle glass beam splitter and electrical illumination and were used to aim the plane's machine guns. One version was used in operational trials on the Albatros D.Va fighter biplane and Fokker Dr.1 fighter triplane.[25] There was some interest in this sight after World War I but reflector sights in general were not widely adopted for fighter and bomber aircraft until the 1930s, first by the French, then by most other major airforces. [26] These sights were not only used for aiming fighter aircraft, they were used with aircraft defensive guns and in bombsights.
Reflector sights as aircraft gun-sights have many advantages. The pilot/gunner need not position their head to align the sight line precisely as they did in two-point mechanical sights, head position is only limited to that determined by the optics in the collimator, mostly by the diameter of the collimator lens. The sight does not interfere with the overall view, particularly when the collimator light is turned off. Both eyes may be used simultaneously for sighting.
The optical nature of the reflector sight meant it was possible to feed other information into field of view, such as modifications of the aiming point due to deflection determined by input from a gyroscope.[27] 1939 saw the development by the British of the first of these gyro gunsights, reflector sights adjusted by gyroscope for the aircrafts speed and rate of turn, enabling the display of a lead-adjusted sighting reticle that lagged the actual "boresight" of the weapon(s), allowing the boresight to lead the target in a turn by the proper amount for an effective strike[28]
As reflector sight designs advanced after World War II, giving the pilot more and more information, they eventually evolved into the head up display (HUD). [29] The illuminated reticle was eventually replaced by a video screen at the focus of the collimating optics that not only gave a sighting point and information from a lead-finding computer and radar, but also various aircraft indicators (such as an artificial horizon, compass, altitude and airspeed indicators), facilitating the visual tracking of targets or the transition from instrument to visual methods during landings.
The idea of attaching a reflector sight to a firearm has been around since the sight's invention in 1900.[30] Soon after World War II models appeared for rifles and shotguns including the Nydar shotgun sight (1945)[31], which used a curved simi-reflective mirror to reflect an ambient lit reticle, and the Giese electric gunsight (1947), which had a battery powered illuminated reticle.[32] Later types included the Qwik-Point (1970) and the Thompson Insta-Sight. Both were a beam spliter type reflector sights that used ambient light: illuminating a green crosshair in the Insta-Sight, and a red plastic rod “light pipe” that produced a red aiming spot reticle in the Qwik-Point .[33]
The mid to late 70s saw the introduction of what are usually referred to as "red dot sights", a type that gives the user a simple bright red dot as an aiming point.[34] The typical configuration for this sight is a compact curved mirror reflector design with a red Light-emitting diode (LED) at its focus. Using an LED as a reticle is an innovation that greatly improves the reliability and general usefulness of the sight. There is no need for other optical elements to focus light behind a reticle. The mirror can use a dichroic coating to reflect just the red spectrum allowing it to pass through most other light. The LED itself is solid state and consumes very little power, allowing battery powered sights to run for hundreds and even tens of thousands of hours.
Reflector sights for military firearms (usually referred to by the abbreviation “reflex sight”) took a long time to be adopted. The US House Committee on Armed Services noted as far back as 1975 on the suitability of the use of reflex sight for the M16[35] but the US military did not introduce a reflector sights until 2000 with the Aimpoint CompM2 red dot sight, designated the “M68 Close Combat Optic”
Many reticle illumination and pattern options are available. Common light sources used in firearm reflector sights include battery powered lights, fiber optic light collectors, and even tritium capsules. Some sights are specifically designed to be visible when viewed through night vision devices. The color of a sight reticle is often red or amber for visibility against most backgrounds. Some sights use a chevron or triangular pattern instead, to aid precision aiming and range estimation, and still others provide selectable pattern.
Sights that use dot reticles are almost invariably measured in minutes of angle, or "MOA". MOA is a convenient measure for shooters using English units, since 1 MOA subtends approximately 1.0472 inches at a distance of 100 yards (91.44 m). This is generally rounded to 1 inch at 100 yards, which makes MOA a handy unit to use in ballistics. The 5 MOA (1.5 mrad) dot is small enough not to obscure most targets, and large enough to quickly acquire a proper "sight picture". For many types of action shooting, a larger dot is preferred; 7 (2.0 mrad), 10 (2.9 mrad), 15 (4.4 mrad) or even 20 MOA (5.8 mrad) dots or rings are used; often these will be combined with horizontal and/or vertical lines to provide a level reference.
Most sights have either active or passive adjustments for the reticle brightness, which help the shooter adapt to different lighting conditions. A very dim reticle will help prevent loss of night vision in low-light conditions, while a brighter reticle will display more clearly in full sunlight.
Modern optical reflector sights designed for firearms and other uses fall into two housing-configurations: tubed and open.[36]
Reflector sights have been used over the years in nautical navigation devices and surveying equipment. Albada type sights were used on early large format cameras, "Point and shoot" type cameras, and on simple disposable cameras.[37]
These sights are also used on astronomical telescopes as finderscopes, to help aim the telescope at the desired object. There are many commercial models, the first of which was the Telrad introduced in the late 1970s, with others now available from companies such as Apogee, Celestron, Photon, Rigel, and Televue.[38] These sights are also used in the entertainment industry in productions such a live theater on "Follow Spots" spotlights so the spotlight operator can aim the light without turning it on.